
RADAR: Runtime Asymmetric Data-access Driven
Scientific Data Replication

John Jenkins1,2,3, Xiaocheng Zou1, Houjun Tang1, Dries Kimpe2, Robert Ross2, and
Nagiza F. Samatova1

1 North Carolina State University, Raleigh, NC 27695, USA,
{xzou2,htang4,nfsamato}@ncsu.edu,

2 Argonne National Laboratory, Argonne, IL 60439, USA
{jenkins,kimpe,rross}@mcs.anl.gov,

3 Corresponding author: jenkins@mcs.anl.gov

Abstract. Efficient I/O on large-scale spatiotemporal scientific data requires scrutiny
of both the logical layout of the data (e.g., row-major vs. column-major) and
the physical layout (e.g., distribution on parallel filesystems). For increasingly
complex datasets, hand optimization is a difficult matter prone to error and not
scalable to the increasing heterogeneity of analysis workloads. Given these fac-
tors, we present a partial data replication system called RADAR. We capture
datatype- and collective-aware I/O access patterns (indicating logical access) via
MPI-IO tracing and use a combination of coarse-grained and fine-grained per-
formance modeling to evaluate and select optimized physical data distributions
for the task at hand. Unlike conventional methods, we store all replica data and
metadata, along with the original untouched data, under a single file container
using the object abstraction in parallel filesystems. Our system can produce up
to manyfold improvements in commonly used subvolume decomposition access
patterns. Moreover, the modeling approach can determine whether such optimiza-
tions should be undertaken in the first place.

1 Introduction

In high-performance computing (HPC) systems and parallel filesystems such as PVFS [7],
Lustre [33], and GPFS [32], the distribution of data across multiple storage devices is a
difficult problem, which numerous works have been dedicated to solving. The combina-
tion of high dimensionality (multiple variables distributed in a spatiotemporal domain)
and distributed requests over many processes complicates making an informed decision
about how to place data in order to achieve high performance. The problem is exacer-
bated when noncontiguous access patterns are induced on storage, such as subvolume
access. Even optimizations made to reduce or eliminate noncontiguous disk access,
such as two-phase collective I/O [40], create new access patterns for which the data
distribution may not be optimized.

Previous works have looked at data layout optimization in an HPC context in two
general respects: modifying the logical layout of data with the goal of producing spe-
cialized data organizations for a specific usage (e.g., range-query processing on sci-
entific data [23, 12, 19]) and optimizing the physical distribution of datasets to better

match the mapping of process requests to I/O servers [37, 52, 38], either in place or as
separate entities in storage, and with varying degrees of adaptability. However, these
works have some combination of the following potential problems: modified logical
formats introduce both interoperability concerns and difficulties related to manual man-
agement of the custom format; works that provide multiple data layouts or replicate data
in multiple formats rely on creating directories/files for each, leading to a large number
of files to process any time the dataset is used; and the distribution formats are either
fixed or optimize for a single metric (e.g., disk thrashing via DiskSim [3], requests to a
single segment of file).

To mitigate problems, we present a model-driven, adaptive layout optimization
framework, called RADAR, using direct parallel filesystem semantics. Our layout opti-
mization is based on partial replication, allowing a controllable increase in dataset sizes
in exchange for I/O performance optimization. Furthermore, as opposed to previous
works, which fix either the regions of data to replicate or the replication format, we
allow variability in both. In particular, we present the following contributions:

1) Adaptive replica management policy. Given a set of I/O access patterns, our
replica layout manager (Section 2.1) uses an I/O performance modeling approach to
(1) create replicas with varied layouts for performance optimization of input access
patterns and (2) to rank replicas for inclusion under storage-limited scenarios. Further-
more, our approach can gracefully handle imbalances in both server loads and client
loads, using performance modeling to account for the former and distribution heuristics
to account for the latter. Using a prototype MPI-IO driver, we show that our method is
effective at accelerating common subvolume decomposition tasks, showing multifold
speedups under many scenarios.

2) Single-container, nonintrusive dataset storage. All replica data and metadata are
stored alongside the original, unchanged data in a single file container, achieved through
direct object-storage semantics (Section 2.2). Distribution of replica data among a fixed
set of replica objects is enabled through a combination of sparse-file capabilities and a
object-slice-based allocation scheme.

3) Datatype- and collective-aware MPI-IO tracing. As an enabling technology, we
develop a tracer capable of collecting full logical I/O requests with low overhead at the
MPI-IO-level (Section 2.3). It is configurable to collect either precollective or postcol-
lective optimizations (or both).

Our paper is organized as follows. Section 2 describes the framework, including
necessary background. Section 3 presents our experiments. Section 4 examines related
work. Section 5 briefly summarizes our conclusions.

2 Method

The system workflow, in which access patterns are garnered from applications and
replicated data layouts are created to optimize for those access patterns, is realized
by a number of components, as shown in Figure 1. First we develop a datatype-aware,
collective-aware I/O trace layer that captures I/O requests. Then we process traces us-
ing a pattern analyzer, outputting access patterns of interest, such as strided access. Our
replica layout manager ingests these patterns and, along with previously generated pat-

Fig. 1. RADAR components, across the I/O software stack. The shaded figures delineate our
contributions.

terns, determines what data to replicate and in what format. Our replica-aware, object-
storage-based ADIO implementation matches I/O requests to replications, redirecting
the subsequent EOF object operations.

Since the bulk of our methodology lies in the layout manager and works indepen-
dent of the method of replica distribution and access pattern generation, we first discuss
it in Section 2.1. Next, we describe the data management policies employed by our
method in Section 2.2, followed by the tracing and trace-analysis components in Sec-
tion 2.3. The replica-aware ADIO driver is discussed in Section 2.4.

2.1 RADAR Layout Manager

The goal of RADAR’s layout manager component is to create replicas with a lay-
out that improves I/O performance under a given set of access patterns. To provide
a framework capable of doing so, we use two strategies. First, to optimize in the pres-
ence of concurrent accesses, we generate replicas for time-delimited pattern sets. Sec-
ond, to quickly generate and evaluate candidate replica sets, we adopt a two-phase
performance-modeling approach, using a coarse-grained performance model to quickly
produce and select candidate replica sets and using a fine-grained performance model
to compute the estimated performance difference against the original data layout. The
following sections discuss the individual components.

Pattern Preprocessing Preprocessing of the patterns is driven by our optimization
goals: create a replica enabling efficient access of the pattern, while being aware of con-
current system operations. The latter has been examined in previous work by converting
all accesses into log-structured, effectively creating a one-to-one process-to-server map-
ping [1, 52]. Here we are looking at flexible distribution among multiple servers for read
optimization, rather than write optimization.

Each pattern in our analyzed traces has starting and ending times. Given these and a
value �, the patterns are partitioned into buckets, each corresponding to a time window

of length �. Each bucket is then considered a single entity for the purposes of perfor-
mance modeling and optimization. Since each bucket need not be sorted in our method,
the overall process is linear in the number of patterns.

Replica Generation and Ranking – Performance Modeling We use a simple, constant-
time performance model to generate candidate replicas and a more involved model to
give a relative performance comparison between the original data layout and candidate
layouts. This design decision is made in order to quickly generate replicas for testing,
while retaining the ability to evaluate against unbalanced access patterns with respect
to either the amount of data requested per process or the amount of data processed by
each I/O server.

Preliminaries Our models use latency/bandwidth measurements over both network and
storage, assuming serialization of requests at the node level (both client and server)
and requests to storage. Table 1 shows the relevant variables. Furthermore, we make a
few simplifying assumptions across both models that, while harmful to general-purpose
high-accuracy performance prediction, still allow us to make valid measures for com-
parative purposes over time-gated accesses in a manner that is computationally reason-
able. First, we assume no pipelining of network and storage operations, insulating us
from false positives arising from slightly different access schedules but giving a pes-
simistic view of system capabilities. Second, resource contention is measured through
the aggregation of request latencies and, in the fine-grained performance model, through
penalization terms on nodes based on the number of distinct requests. This approach
misses some phenomena observed in real runs or in full system/subsystem simula-
tors [3], such as disk head thrashing.

Table 1. Performance Model System Parameters

System parameters
n I/O servers

`
net

I/O request (network) latency
b
net

Network per-byte transfer time
`
sto

I/O request (disk) latency
b
sto

Storage per-byte transfer time
r
s

Local storage readahead
Per-pattern-set inputs

P Set of access patterns with process mappings
p I/O participants (clients)
m I/O participants per node

Coarse-grained model parameters
B Total request size across all patterns (derived)
n
p

Servers contacted per client (input)
r Average request size per client per server = B/(pn

p

)

Coarse-Grained Model The coarse-grained model is a generalization of the cost model
created by Song et al. [37] to optimize accesses under the following characteristics:
uniform access sizes, perfect access distribution among servers corresponding to PVFS
data layouts, and single time of issuance across all processes. This model, while not
created for general-purpose I/O modeling, has proven useful for HPC applications with
regular access patterns and is appropriate for driving our replica placement method,
given that we are in full control of replica placement and can produce such regular
accesses. First we discuss the model and generalization; then we discuss how we use
the model to find effective replica layouts.

The cost model by Song et al. has four separate costs that are summed to find the fi-
nal result: T

e

, the establishment time for all network operations; T
x

, the time to transfer
all request data across the network; T

s

, the “startup” time for all storage accesses; and
T
rw

, the read/write time for all storage accesses. The original model computes these
costs based on a number of specific, fixed layouts mapping process requests to servers
(see [37] for more details). We observe that the parameter being varied across each of
the models is the servers contacted per client. Making this an explicit variable n

p

allows
us to collapse the equations into a single set:

T
e

= max(mn
p

, dpnp

n
e)`

net

(1)

T
x

= max(mn
p

, dpnp

n
e)rb

net

(2)

T
s

= dpnp

n
e`

sto

(3)

T
rw

= dpnp

n
erb

sto

. (4)

Coarse-Grained Model Usage Given the definition of the coarse-grained model, we
derive a simple replica creation process, using the following strategy. Assume the un-
derlying accesses are regular and uniform, compute min

np(Te

+ T
x

+ T
s

+ T
rw

),
and then resolve any load balances by over/underprovisioning replica striping across
the servers. After computing B and an average m, simply calculate model values for
n
p

2 {1, 2, . . . , n}, and choose the minimum. Next, perform the logical striping un-
der the assumption that r is the actual request size per client. Then, compute for each
pattern which servers its data resides on. An example mapping is shown in Figure 2.
The intuition behind this layout heuristic is that patterns with balanced accesses will
be optimized as normal and that overprovisioning for unbalanced accesses with larger
relative sizes will be made up for by underprovisioning for accesses with smaller sizes,
mapping degree of concurrency to relative access size.

Fine-Grained Model The fine-grained model shares similarities with the coarse-grained
model, using latency/bandwidth modeling at both the network and the storage levels to
generate an overall cost. However, whereas the coarse-grained model makes some sig-
nificant assumptions about access characteristics, we need a more robust model capable
of capturing load imbalance. Our approach consists of the following two steps, with
the underlying steps of mapping each pattern in the pattern set to its respective client

Fig. 2. Access pattern over and under provisioning based on model optimization on balanced
accesses (for n

p

= 2).

process/node and set of contacted servers: (1) compute a localized T 0
e

, T 0
s

and T 0
rw

for
each server, and (2) calculate the total time to receipt T 0

t

for each client node based on
the server calculations, with the maximum among them being the total request time.

The computation of T 0
s

and T 0
rw

is relatively straightforward, with T 0
s

being the num-
ber of noncontiguous blocks (measured at a page granularity and taking into account
readahead) accessed times the storage access latency and T 0

rw

being the total size of
all requests to the server times the inverse of the bandwidth. For T 0

rw

, we additionally
adjust the performance to account for readahead: if two consecutive requests are within
a readahead window (default 128 KB on Linux), then the disk latency cost is avoided
at the cost of consuming the bytes separating the two requests.

The computation of T 0
e

and T 0
t

are more nuanced, since we must consider both ac-
cess latency and wait times for request/response receipt. Because computing these wait
times exactly would require a known access schedule (as well as a more architecturally
accurate simulation), we instead compute an approximate. For T 0

e

, we compute the net-
work latency times the number of incoming requests, with a penalization term ✏

e

. For
this, we take the node contacting the server with the maximum number of outgoing re-
quests, and we assume that the request to the server occurs after all of its other requests.
Similarly for T 0

t

, the penalization term ✏
t

is computed by assuming that the data re-
quested by the given node is issued after the server’s access schedule, for the contacted
server with the largest load.

2.2 EOF Data Management

Background – PVFS and EOF Recently, the “end-of-files” (EOF) [13] extension to
the Parallel Virtual File System (PVFS) [7] was created to expose the object storage
abstraction directly into the client space, presenting a file as a set of distinct, physi-
cally distributed objects that applications forward requests directly to, as opposed to a
more implicit mapping via a striping function. For example, dataset metadata can be
forwarded to a single object, while the data itself can be assigned distinct objects based
on timesteps, variables, and so forth. We use EOF to achieve our layout optimization
goals.

RADAR Object Layout The EOF object layout is such that nearly all RADAR data
components exist under a single filename. The original dataset is stored in unchanged
form, striped by some distribution across multiple objects. We include a file metadata
object since distribution in EOF is relegated to the user. For RADAR, at file create time
we allocate a number of replica objects equal to the number of data objects. We do this
both for practicality reasons (limits on per-file concurrency) and for semantic reasons
(currently, EOF cannot dynamically add or remove objects from a file container). A
replica metadata object is used to store the mapping of replicas to object locations. We
place the set of generated access patterns processed by RADAR in a dedicated object
for the results to persist across multiple application runs. Note that the trace and trace
analysis output currently exist outside the MPI/EOF file container, although these can
be integrated with ease.

Replica Object Storage Strategy One problem with using a shared set of replica
objects is how to distribute multiple replicas with heterogeneous distributions in the
manner the layout manager instructs. To this end, we exploit sparse-file capabilities in
the local filesystems employed by PVFS. Essentially, sparse files do not store blocks not
written to asides from metadata—a block can represent data at, for example, a gigabyte
offset without additionally having blocks representing all previous offsets.

We divide all objects into allocation units we call object domains (ODs), an example
of which is shown in Figure 3. An OD corresponds to the full set of replica objects,
spanning a per-object address space with fixed, large-granularity sizes. Each replication
is placed within a single OD. To avoid biasing replica placement towards one object
or another, replicas are assigned starting objects in round-robin order. In the figure,
for example, the replica shown begins addressing at the leftmost object, while the next
replica created will begin addressing at the next leftmost object.

Fig. 3. Allocation units in RADAR (“object domains,” or ODs), and replica layout in an OD.

2.3 I/O Tracer and Analyzer

Our tracing methodology is achieved through MPI-IO, implemented by using the un-
derlying ADIO [41] interface in ROMIO [42], the MPI-IO implementation in MPICH.
This strategy allows access efficiently to both MPI datatypes used in I/O calls and the
result of underlying collective calls. The output of the tracer includes all ADIO calls, as
well as all per-process offset/length pairs, in a plain-text format. Compression method-
ologies such as inline pattern analysis or off-the-shelf compressors will be explored in
future work. More details about our tracing methodology can be found in our previous
work [20].

To gather the desired access patterns, we built a variant of the IOSig trace analy-
sis software [4, 50]. We similarly use a template matching approach, but, as our tracer
works at the ADIO level and additionally processes datatypes, the processing of the
traces has been rewritten. For more discussion pertaining to access pattern categoriza-
tion and discovery, see [4, 50]. For this paper, the specific access patterns we gather are
contiguous access patterns (sequential access of a large space with fixed or average-size
request sizes) and k-d strided access patterns (accesses that differ in offset by a fixed
value, or stride), both of which are common in HPC I/O workloads, typically corre-
sponding to accesses along spatio-temporal domains or across multiple variables.

2.4 Replica-Aware ADIO Driver

The responsibilities of the RADAR ADIO driver are to interface with EOF, maintain the
semantically varying sets of objects, and remap I/O requests into the replica space, as
appropriate. Asides from the remapping portion, the rest of the processing is relatively
simple, corresponding to loading/distributing file and replica metadata and driving some
RADAR-specific operations, such as carrying out the replication.

Given a set of replicated data layouts and a set of I/O requests (e.g., logical file
offset/length pairs via a call to MPI File read), reading from replicas occurs in two
steps: finding applicable replicas to read and choosing among the resulting candidates.

When finding replicas that can satisfy a given request, a linear-time matching ap-
proach over all replicas is undesirable. Furthermore, using spatial data structures such
as interval or R-trees requires flattening strided patterns into their individual contigu-
ous blocks, leading to extremely large search structure sizes. Hence, we use a binning
approach, similar to generating an inverted index [48, 53] over the file, mapping logical
regions of file (the bins) to a list of replicas overlapping with the regions to prune the
search space. Additionally, to help prevent worst-case linear behavior (all replicas over-
lap with a bin), we employ a one-element history, under the assumption that consecutive
I/O requests are highly likely to map to the same distinct replicas multiple times. Note
that for read requests, we consider only replicas that contain the full file offset/length
requested, since splitting up the requests further to disparate physical locations would
likely reduce performance.

Once we have a set of candidate replicas to choose from, the next task is to select
which replica among the set to read from. Note that this choice is nonexistent for writes,
since all replicas would need to be updated. Furthermore, complicating the decision is
that the information available is inherently local—individual processes cannot have a

full system view. Therefore, we use a simple heuristic we call smallest containing block
(SCB). The idea behind SCB is that of specialization: we consider replicas with a finer
granularity to be more specialized than those without, and we believe they should be
prioritized in the replica selection process. Generally, then, replicas over strided data
will more than likely be selected over replicas over contiguous data, since each of the
strided data structures will be more sparse.

3 Experimental Evaluation

All experiments were run on the Fusion cluster at Argonne National Laboratory. Each
node contains two quad-core Intel Xeon processors at 2.53 GHz with 32 GB RAM,
and nodes are connected by InfiniBand QDR. Each node in Fusion contains local hard-
disk storage (250 GB IBM iDataPlex). Additionally, our implementation of RADAR
is based on MPICH 3.0.2 and PVFS2 2.8.1, patched with EOF. Because of issues with
InfiniBand support for PVFS on Fusion, both MPI communication and PVFS client-
server communication are performed via TCP over InfiniBand.

Since we use a modified version of PVFS and since each node in Fusion has local
storage, we assign a subset of the nodes to serve as PVFS I/O servers and use the
remaining as I/O clients. We use eight I/O servers in all experiments. Hence, each server
initially contains 8 GB of data, striped using 1 MB blocks.

Table 2 shows the performance model parameters we gathered via microbench-
marks on Fusion. We use the BMI pingpong utility in PVFS to gather network perfor-
mance through PVFS, where BMI (Buffered Message Interface) is PVFS’s client/server
communication interface. We use simple read benchmarking via collocating a PVFS
client with a server to gather storage performance parameters. Note that the microbench-
mark result for disk bandwidth is much lower than expected: the bandwidth when not
going through PVFS is 90 MB/s. We were unable to eliminate this discrepancy, but
we believe it to be a result of internal threading and buffering overheads on the PVFS
server.

Table 2. Performance Model Variables

System parameters
n 8 I/O servers
r
s

128 KB Local storage readahead
`
net

32.9µs I/O request (network) latency
`
sto

6.20ms I/O request (disk) latency
b
net

0.00112µs (867 MB/s) Network per-byte transfer time
b
sto

0.0212µs (44.98 MB/s) Storage per-byte transfer time

For our inverted list acceleration structure for replica lookup, we divided the file
into 1,024 bins, each covering a 64 MB extent of data.

3.1 Benchmarks

We evaluate our layout optimization work within the context of four different multi-
dimensional array decompositions, shown in Figure 4: row-wise (distribute volume by
contiguous plane), column-wise (distribute volume by non-contiguous plane), block-
wise (distribute volume by 3D subvolume), and timestep-wise (distribute single sub-
volume from a range of timesteps). The row-wise decomposition induces contiguous
patterns at each process, while the remaining decompositions induce multidimensional
strided patterns at each process. For all experiments, we used a subvolume of (time, X, Y, Z)

dimensions 128⇥ 256⇥ 256⇥ 256 in row-major order, each element of which is a 32-
byte structure (e.g., four C doubles). The total size of this dataset is 64 GB. Note that
these access patterns are a superset of the access patterns exhibited by several well-
known benchmarks such as MPI-Tile-I/O [27], IOR [18], and PIO-bench [34], all of
which perform accesses with regular (single- or multidimensional) strides.

Row Column Cube Time

Z

XY

Fig. 4. Subvolume decompositions used in our evaluation (contiguous in order Z, Y,X, time).

3.2 Decomposition Performance

We test each decomposition using independent I/O with all processes on each node
participating. As shown in our previous work [20], a single participant-per-node con-
figuration exhibits similar behavior on our test system, and replication on collective
I/O access patterns (e.g., large, contiguous patterns) shows no improvement, although
modeling is capable of capturing this case.

Figure 5 shows performance under the different decompositions both before and
after RADAR data replication. For these runs, we synchronize prior to running the
decomposition and calculate bandwidth with respect to the maximum elapsed time for
each individual read. We note a few points about these experiments:

1. All decompositions except the time-based decomposition decompose the same over-
all data size of 2 GB (four timesteps of 512 MB volumes). Thus, with an increasing
number of clients, the average request size decreases, and the number of requests
increases, leading to potentially less efficient access when not using collective I/O.

2. The time-based decomposition defines a fixed-size subvolume for each client to
read of size 64 MB. As the number of clients increase, the per-client requests re-
main the same, leading to an increase in the total request size.

3. The cube decomposition divides the volume into perfect cubes (1, 8, 27, 81, 125,
etc.) no less than the number of clients, and clients are assigned multiple blocks to
read, resulting in varying request granularities based on the number of clients. For

instance, a four-client run will divide the subvolume into eight blocks and assign
two blocks to each client. This approach can lead to both load imbalance (processes
can be oversubscribed blocks compared with others) and varied access patterns
because of the possibility of multiple smaller blocks combining into a single, large,
contiguous block.

The top left of Figure 5 shows the time-based decomposition. Without replication,
the aggregate performance is far below peak performance because of the noncontiguous
accesses. The use of data reorganization through replication enables high performance
across the spectrum, although tapering off once I/O servers begin processing requests
from multiple clients.

 0

 50

 100

 150

 200

 250

 300

1
(4K)

2
(4K)

4
(4K)

8
(4K)

16
(4K)

32
(4K)

64
(4K)

128
(4K)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
M

B
/s

)

S
p

e
e

d
u

p
 u

si
n

g
 R

e
p

lic
a

tio
n

s

I/O Clients
(Average Block Size per Client)

Time Decomposition (8 Clients per node)

Orig.
RADAR

Speedup

 50

 100

 150

 200

 250

 300

 350

 400

1
(512M)

2
(256M)

4
(1M)

8
(4K)

16
(3.8K)

32
(4K)

64
(2K)

128
(2.3K)

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
M

B
/s

)

S
p

e
e

d
u

p
 u

si
n

g
 R

e
p

lic
a

tio
n

s

I/O Clients
(Average Block Size per Client)

Cube Decomposition (8 Clients per node)

Orig.
RADAR

Speedup

 0

 50

 100

 150

 200

 250

 300

 350

 400

1
(512M)

2
(4K)

4
(2K)

8
(1K)

16
(512B)

32
(256B)

64
(128B)

128
(64B)

 0

 2

 4

 6

 8

 10

 12

 14

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
M

B
/s

)

S
p

e
e

d
u

p
 u

si
n

g
 R

e
p

lic
a

tio
n

s

I/O Clients
(Average Block Size per Client)

Column Decomposition (8 Clients per Node)

Orig.
RADAR

Speedup

 160
 180
 200
 220
 240
 260
 280
 300
 320
 340
 360
 380

1
(512M)

2
(256M)

4
(128M)

8
(64M)

16
(32M)

32
(16M)

64
(8M)

128
(4M)

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
M

B
/s

)

S
p

e
e

d
u

p
 u

si
n

g
 R

e
p

lic
a

tio
n

s

I/O Clients
(Average Block Size per Client)

Row Decomposition (8 Clients per node)

Orig.
RADAR

Speedup

Fig. 5. Decomposition results with and without replication via RADAR.

Figure 5 shows the cube-based decomposition. This decomposition results in block
sizes of high variance with a changing number of clients, which is a significant fac-
tor in the overall performance. In the figure, the performance implications can easily be
seen between the four-client and eight-client decomposition for the nonreplication case,
and the eight-client and 16-client decomposition for the RADAR case. Regardless, the
use of RADAR helps smooth out the performance characteristics as a result of making
the strided accesses contiguous per client and over/underprovisioning of replicas based
on load. Additionally, for the small-client case, we notice performance regressions be-
tween the no-replication and replication case. We are currently unable to diagnose this
difference; the generated layout by RADAR is the same, and the I/O driver follows
largely the same code path.

The bottom left of Figure 5 shows the column-based decomposition performance.
This represents a pathological I/O pattern, as seen by the average contiguous block
sizes. Hence, performance without collective optimizations or RADAR is far worse
than any of the other decompositions as the number of clients increase. RADAR can

greatly improve performance over the original data layout, although it also tapers off
somewhat for increasing client counts.

The bottom right of Figure 5 shows the row-based decomposition performance,
representing the “best case” for parallel I/O without reorganization: large, contiguous,
non-overlapping blocks. Here, since the storage is the primary bottleneck and block
sizes are very large, RADAR is not shown to have any benefit.

3.3 Model Verifications

We now look at how the performance modeling approach compares with the perfor-
mance shown in Section 3.2. The goal of the performance models is to show whether
a specific data layout can be improved by a modified data layout via replication. Note
that this goal is different from strict performance accuracy: here, the primary measure-
ment of interest is the accuracy of relative performance between two layouts (one with
replicas, one without). Since the models do not perform full system simulation, they are
unsuitable for general-purpose performance prediction.

Figure 6 shows the results, comparing the model-derived performance of both the
original layout and the layout under replication with the median of the performance
shown in Section 3.2. We additionally show the estimated performance using the coarse-
grained model corresponding to the best layout. In general, the “best layout” found
corresponds to the heuristic of spreading each pattern’s data across as many servers as
possible until overlap occurs, in which case the distribution contracts accordingly.

 50

 100

 150

 200

 250

 300

 350

 1 2 4 8 16 32 64 128

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
M

B
/s

)

I/O Clients

Time Decomposition (8 Clients per Node)

Orig.
RADAR

Model (Orig.)
Model (RADAR)

Coarse-grain
Model (RADAR)

 50

 100

 150

 200

 250

 300

 350

 1 2 4 8 16 32 64 128

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
M

B
/s

)

I/O Clients

Cube Decomposition (8 Clients per Node)

Orig.
RADAR

Model (Orig.)
Model (RADAR)

Coarse-grain
Model (RADAR)

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 4 8 16 32 64 128

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
M

B
/s

)

I/O Clients

Column Decomposition (8 Clients per Node)

Orig.
RADAR

Model (Orig.)
Model (RADAR)

Coarse-grain
Model (RADAR)

 180

 200

 220

 240

 260

 280

 300

 320

 340

 1 2 4 8 16 32 64 128

A
g

g
re

g
a

te
 B

a
n

d
w

id
th

 (
M

B
/s

)

I/O Clients

Row Decomposition (8 Clients per Node)

Orig.
RADAR

Model (Orig.)
Model (RADAR)

Coarse-grain
Model (RADAR)

Fig. 6. Model results against median empirical performance (8 clients per node).

Overall, the model results capture some degree of performance difference between
the original layout and the candidate replica set layout. Large, contiguous accesses are
shown to have little difference between both the original and the replicated layouts,

implying that creating the replica set would result in minimal, if any, gain. Smaller,
noncontiguous accesses, on the other hand, are correctly shown to have a large degree
of benefit by the models.

A few nontrivial aspects of the test system and software prevent the models from
performing more accurately. First, the model assumes that additional nodes and servers
correspond to additional network resources to draw upon. As seen in the time-based
decomposition (fixed access sizes per client), this is not the case. Hence, more accurate,
architecture-specific network modeling is needed. Furthermore, the cost models gener-
ally overestimate the performance: we believe this overestimation to be the cause of our
readahead simulation being optimistic in its ability to effectively cache pages without
interfering with normal system performance, as well as overheads such as buffering that
were not accounted for.

4 Related Work

4.1 Replication in Storage-I/O Systems

Data replication in storage systems is a well-researched topic in many domains. Many
parallel/distributed filesystems, such as the Hadoop Distributed File System [35] and the
Google File System [10, 26], built for task-centric, data-intensive workloads, as well as
the Ceph filesystem [46], have data replication as a first-order feature. Local filesystem
replication has also been explored in a performance context by reorganizing data to
minimize rotational latency and maximize locality [2, 15].Additionally, hybrid methods
are being explored in parallel filesystems without intrinsic replication support, such as
a shim layer for PVFS allowing Hadoop-style workloads and replication [39].

Database systems also widely use replication, both for fault tolerance and as a per-
formance optimizer. For instance, replicas can be created by using query history as
a guide [28, 47] or in a more dynamic approach where replication/indexing occurs as
queries are performed [17, 16].

The use of replication to ensure high availability and/or improve performance has
also been explored through high-level libraries and I/O middleware. For MPI-based
applications, works have shown that file block replication using the PMPI interface
provides application-level I/O resiliency [36], while replicating data in different storage
layouts can be used to improve performance for one-to-one, process-to-file configura-
tions [37, 51]. Additionally, specific metrics can be optimized via replication and reor-
ganization, such as minimizing disk head thrashing by examining local disk traces with
DiskSim [3, 52].

4.2 Capturing and Detecting I/O Access Patterns

Many approaches have been developed to systematically derive system usage infor-
mation from applications. For MPI-based applications, the MPI Parallel Environment
(MPE) [8] provides full MPI event tracing, while mpiP [44] provides lightweight, sta-
tistical measures. The ScalaTrace family of MPI tracers focuses on compressed trace
generation [29, 31, 45, 49], using histogram generation and a combination of intranode

and internode trace compression. Dynamic instrumentation methods include automati-
cally instrumenting at compile time through source code analysis [22], as well as run-
time binary instrumentation through IOPin [21], based on the Pin [24] framework. For
a “big-picture” view, Darshan [6, 5] focuses on center-wide usage patterns by com-
bining local, subsystem metrics (such as the Sysstat [11] and fsstats [9] utilities) and
application-level metrics (instrumented through POSIX and MPI-IO).

Once acceptable profiles or logs of application/system performance are gathered,
they can be mined for emergent patterns. Statistical learning methods can be used in
a general sense to capture high-level patterns such as block-to-block association [25,
30, 43, 2]. Recent methods have been developed specifically for HPC, again typically
through the MPI/MPI-IO layers. Examples include strided pattern analysis for MPI
prefetching [4] and pattern recognition for PLFS index compression under a check-
pointing use-case [14]. The IOSig [4] trace analyzer converts I/O operations to compact
and parameterized representations called I/O signatures using a template matching ap-
proach, which iteratively attempts to match specific patterns (e.g., regularly strided) to
the sequence of I/O accesses.

5 Conclusion

Effective data distribution in large-scale analysis systems is an integral component of
achieving high-performance I/O, especially in the presence of complex, noncontiguous
workloads such as the volume decompositions we have presented. Through the tight
coupling with a filesystem view of the data as a set of distinct objects, we were able to
create arbitrary data layouts optimized for the access patterns induced on the dataset,
all in a single container. RADAR is a promising step in the direction of automated
specialization of data layouts based on application-specific needs and access patterns,
providing both increased performance and an initial ability to reason about the “worth”
of layouts for the purpose of marshaling usage of limited space for optimized data
distributions.

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Science, under
Contract No. DE-AC02-06CH11357.

References

1. J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez, M. Polte, and
M. Wingate. PLFS: A checkpoint filesystem for parallel applications. In Proceedings of
the Conference on High Performance Computing Networking, Storage and Analysis, SC ’09,
pages 21:1–21:12, New York, NY, USA, 2009. ACM.

2. M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak, R. Rangaswami, and V. Hristidis.
BORG: Block-reORGanization for self-optimizing storage systems. In Proccedings of the
7th Conference on File and Storage Technologies, FAST ’09, pages 183–196, Berkeley, CA,
USA, 2009. USENIX Association.

3. J. S. Bucy, J. Schindler, S. Schlosser, G. Ganger, and Contributors. The DiskSim simulation
environment version 4.0 reference manual. Technical Report CMU-PDL-08-101, Carnegie
Mellon University Parallel Data Lab, 2008.

4. S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp. Parallel I/O prefetching using
MPI file caching and I/O signatures. In International Conference for High Performance
Computing, Networking, Storage and Analysis, 2008. SC 2008, pages 1–12. IEEE, 2008.

5. P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and R. Ross. Understanding
and improving computational science storage access through continuous characterization.
ACM Transactions on Storage (TOC), 7(3):8:1–8:26, Oct. 2011.

6. P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley. 24/7 characterization of peta-
scale I/O workloads. In IEEE International Conference on Cluster Computing, Cluster’10,
pages 1–10, 2009.

7. P. H. Carns, W. B. Ligon, III, R. B. Ross, and R. Thakur. PVFS: A parallel file system for
Linux clusters. In Proceedings of the 4th Annual Linux Showcase and Conference, pages
317–327, 2000.

8. A. Chan, W. Gropp, and E. Lusk. User’s guide for MPE: Extensions for MPI programs.
Technical Report ANL/MCS-TM-ANL-98/xx, Argonne National Laboratory, 2003.

9. S. Dayal. Characterizing HEC storage systems at rest. Technical Report CMU-PDL-09-109,
Carnegie Mellon University Parallel Data Laboratory.

10. S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System. In Proceedings of
the Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03, pages 29–43,
New York, NY, USA, 2003. ACM.

11. S. Godard. Sysstat utilities home page. http://sebastien.godard.pagesperso-
orange.fr/index.html.

12. Z. Gong, D. A. B. II, X. Zou, Q. Liu, N. Podhorszki, S. Klasky, X. Ma, and N. F. Samatova.
PARLO: PArallel Run-time Layout Optimization for scientific data explorations with hetero-
geneous access patterns. In the 13th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid’13), Delft, The Netherlands, 2013.

13. D. Goodell, S. J. Kim, R. Latham, M. Kandemir, and R. Ross. An evolutionary path to object
storage access. In Proceedings of the Seventh Workshop on Parallel Data Storage, PDSW
’12, 2012.

14. J. He, J. Bent, A. Torres, G. Grider, G. Gibson, C. Maltzahn, and X.-H. Sun. Discovering
structure in unstructured I/O. In Proceedings of the Seventh Workshop on Parallel Data
Storage, PDSW ’12, 2012.

15. H. Huang, W. Hung, and K. G. Shin. Fs2: Dynamic data replication in free disk space for
improving disk performance and energy consumption. In Proceedings of the Twentieth ACM
Symposium on Operating Systems Principles, SOSP ’05, pages 263–276, New York, NY,
USA, 2005. ACM.

16. S. Idreos. Database Cracking: Towards Auto-tuning Database Kernels. PhD thesis, Univer-
sity of Amsterdam, 2010.

17. S. Idreos, M. Kersten, and S. Manegold. Database cracking. In Proceedings of the 3rd
International Conference on Innovative Data Systems Research, CIDR’07, 2007.

18. Interleaved or random (IOR) parallel filesystem I/O benchmark.
19. J. Jenkins, I. Arkatkar, S. Laksminarasimhan, D. A. Boyuka II, E. R. Schendel, N. Shah,

S. Ethier, C. Chang, J. Chen, H. Kolla, S. Klasky, R. Ross, and N. F. Samatova. ALACRITY:
Analytics-driven lossless data compression for rapid in-situ indexing, storing, and querying.
Transactions on Large Scale Data and Knowledge Centered Systems (TLDKS), 8220:95–
114, 2013.

20. J. Jenkins, X. Zou, H. Tang, D. Kimpe, R. Ross, and N. F. Samatova. Parallel data layout
optimization of scientific data through access-driven replication. Technical Report TODO,
North Carolina State University, 2014.

21. S. J. Kim, S. W. Son, W.-k. Liao, M. Kandemir, R. Thakur, and A. Choudhary. IOPin:
Runtime profiling of parallel I/O in HPC systems. In 7th Parallel Data Storage Workshop,
PDSW’12, 2012.

22. S. J. Kim, Y. Zhang, S. W. Son, R. Prabhakar, M. Kandemir, C. Patrick, W.-k. Liao, and
A. Choudhary. Automated tracing of I/O stack. In Proceedings of the 17th European
MPI Users Group Conference on Recent Advances in the Message Passing Interface, Eu-
roMPI’10, pages 72–81, Berlin, Heidelberg, 2010. Springer-Verlag.

23. S. Lakshminarasimhan, J. Jenkins, I. Arkatkar, Z. Gong, H. Kolla, S.-H. Ku, S. Ethier,
J. Chen, C. S. Chang, S. Klasky, R. Latham, R. Ross, and N. F. Samatova. ISABELA-QA:
query-driven analytics with ISABELA-compressed extreme-scale scientific data. In Pro-
ceedings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, SC, pages 31:1–31:11, New York, NY, USA, 2011. ACM.

24. C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building customized program analysis tools with dynamic instrumen-
tation. In Proceedings of the 2005 ACM SIGPLAN conference on Programming Language
Design and Implementation, PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM.

25. T. M. Madhyastha and D. A. Reed. Learning to classify parallel input/output access patterns.
IEEE Transactions on Parallel and Distributed Systems, 13(8):802–813, Aug. 2002.

26. M. K. McKusick and S. Quinlan. GFS: Evolution on fast-forward. Queue, 7(7):10:10–10:20,
Aug. 2009.

27. Parallel I/O benchmarking consortium. http://www.mcs.anl.gov/research/

projects/pio-benchmark/.
28. S. Narayanan, U. Catalyurek, T. Kurc, V. S. Kumar, and J. Saltz. A runtime framework for

partial replication and its application for on-demand data exploration. In High Performance
Computing Symposium, SCS Spring Simulation Multiconference, HPC ’05, 2005.

29. M. Noeth, P. Ratn, F. Mueller, M. Schulz, and B. R. de Supinski. ScalaTrace: Scalable
compression and replay of communication traces for high-performance computing. Journal
of Parallel and Distributed Computing, 69(8):696–710, Aug. 2009.

30. J. Oly and D. A. Reed. Markov model prediction of I/O requests for scientific applications.
In Proceedings of the 16th International Conference on Supercomputing, ICS ’02, pages
147–155, New York, NY, USA, 2002. ACM.

31. P. Ratn, F. Mueller, B. R. de Supinski, and M. Schulz. Preserving time in large-scale com-
munication traces. In Proceedings of the 22nd Annual International Conference on Super-
computing, ICS ’08, pages 46–55, New York, NY, USA, 2008. ACM.

32. F. Schmuck and R. Haskin. GPFS: A shared-disk file system for large computing clusters.
In Proceedings of the 1st USENIX Conference on File and Storage Technologies, FAST ’02,
Berkeley, CA, USA, 2002. USENIX Association.

33. P. Schwan. Lustre: Building a file system for 1000-node clusters. In Proceedings of the 2003
Linux Symposium, 2003.

34. F. Shorter. Design and analysis of a performance evaluation standard for parallel file systems.
Master’s thesis, Clemson University, 2003.

35. K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file system. In
Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies,
MSST ’10, pages 1–10, Washington, DC, USA, 2010. IEEE Computer Society.

36. S. W. Son, R. Latham, R. Ross, and R. Thakur. Reliable MPI-IO through layout-aware
replication. In Proceedings of the 7th IEEE International Workshop on Storage Network
Architecture and Parallel I/O, SNAPI ’11, 2011.

37. H. Song, Y. Yin, Y. Chen, and X.-H. Sun. A cost-intelligent application-specific data layout
scheme for parallel file systems. In Proceedings of the 20th International Symposium on
High Performance Distributed Computing, HPDC ’11, pages 37–48, New York, NY, USA,
2011. ACM.

38. H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang. A segment-level adaptive data lay-
out scheme for improved load balance in parallel file systems. In Cluster, Cloud and Grid
Computing (CCGrid), IEEE/ACM International Symposium on, pages 414–423, 2011.

39. W. Tantisiriroj, S. W. Son, S. Patil, S. J. Lang, G. Gibson, and R. B. Ross. On the dual-
ity of data-intensive file system design: Reconciling HDFS and PVFS. In Proceedings of

2011 International Conference for High Performance Computing, Networking, Storage and
Analysis, SC’11, pages 67:1–67:12, New York, NY, USA, 2011. ACM.

40. R. Thakur and A. Choudhary. An extended two-phase method for accessing sections of
out-of-core arrays. Scientific Programming, 5(4):301–317, 1996.

41. R. Thakur, W. Gropp, and E. Lusk. An abstract-device interface for implementing portable
parallel-I/O interfaces. In Proceedings of the 6th Symposium on the Frontiers of Massively
Parallel Computation, FRONTIERS ’96, pages 180–187, Washington, DC, USA, 1996.
IEEE Computer Society.

42. R. Thakur, R. Ross, E. Lust, and W. Gropp. Users guide for ROMIO: A high-performance,
portable MPI-IO implementation. Technical Report ANL/MCS-TM-234, Mathematics and
Computer Science Division, Argonne National Laboratory, 2004.

43. N. Tran and D. A. Reed. Automatic ARIMA time series modeling for adaptive I/O prefetch-
ing. IEEE Transactions on Parallel and Distributed Systems, 15(4):362–377, Apr. 2004.

44. J. S. Vetter and M. O. McCracken. Statistical scalability analysis of communication opera-
tions in distributed applications. In Proceedings of the Eighth ACM SIGPLAN Symposium on
Principles and Practices of Parallel Programming, PPoPP ’01, pages 123–132, New York,
NY, USA, 2001. ACM.

45. K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth. Scalable I/O tracing and analysis. In
Proceedings of the 4th Annual Workshop on Petascale Data Storage, PDSW ’09, pages 26–
31, New York, NY, USA, 2009. ACM.

46. S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn. Ceph: A scalable,
high-performance distributed file system. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation, OSDI ’06, pages 307–320, Berkeley, CA, USA, 2006.
USENIX Association.

47. L. Weng, U. Catalyurek, T. Kurc, G. Agrawal, and J. Saltz. Servicing range queries on
multidimensional datasets with partial replicas. In IEEE International Symposium on Cluster
Computing and the Grid, volume 2 of CCGrid ’05, pages 726–733. IEEE, 2005.

48. I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indexing
Documents and Images. Morgan Kaufmann, second edition, 1999.

49. X. Wu, K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth. Probabilistic communication
and I/O tracing with deterministic replay at scale. In Proceedings of the 2011 International
Conference on Parallel Processing, ICPP ’11, pages 196–205, Washington, DC, USA, 2011.
IEEE Computer Society.

50. Y. Yin, S. Byna, H. Song, X.-H. Sun, and R. Thakur. Boosting application-specific parallel
I/O optimization using IOSIG. In Cluster, Cloud and Grid Computing (CCGrid), pages
196–203, 2012.

51. Y. Yin, J. Li, J. He, X.-H. Sun, and R. Thakur. Pattern-direct and layout-aware replication
scheme for parallel i/o systems. In IEEE International Symposium on Parallel and Dis-
tributed Computing, IPDPS’13, pages 345–356, 2013.

52. X. Zhang and S. Jiang. InterferenceRemoval: Removing interference of disk access for mpi
programs through data replication. In Proceedings of the 24th ACM International Conference
on Supercomputing, ICS ’10, pages 223–232, New York, NY, USA, 2010. ACM.

53. J. Zobel and A. Moffat. Inverted files for text search engines. ACM Computing Surveys,
38(2), 2006.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne
National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science
laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government re-
tains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide
license in said article to reproduce, prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf of the Government.

